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Abstract Control of the autonomous bicycle robot
offers considerable challenges to the field of robotics
due to its nonholonomic, underactuated, and nonmini-
mum-phase properties. Furthermore, instability and
complex dynamic coupling make the trajectory plan-
ning of the bicycle robot even more challenging. In
this paper, we consider both trajectory planning and
tracking control of the autonomous bicycle robot. The
desired motion trajectory of the contact point of the
bicycle’s rear wheel is constructed using the parameter-
ized polynomial curve that can connect two given end-
points with associated tangent angles. The parameters
of the polynomial curve are determined by minimizing
the maximum of the desired roll angle’s equilibrium
of the bicycle, and this optimization problem is solved
by the particle swarm optimization algorithm. Then,
a control scheme that can achieve full-state trajectory
tracking while maintaining the bicycle’s balance is pro-
posed by combining a planar trajectory tracking con-
troller with a roll angle balance controller. Simulation
results are presented to demonstrate the effectiveness
of the proposed method.
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1 Introduction

Single-track vehicles, such as motorcycles and bicy-
cles, provide superior maneuverability and deployment
performance in comparison to double-track vehicles,
such as cars and trucks. Recently, autonomous bicycle
and motorcycle robots attract much attention, because
they can be used as a kind of efficient transportation
tools working in the cities and/or in the mountains
without any environmental burden and do not require
wide contact space to the ground. Moreover, the light
weight of the single-track vehicles also provides attrac-
tive properties, such as high energy efficiency and fast
acceleration.

Research on the modeling of the bicycles and motor-
cycles has a long history. The reader is referred to
[1] and [2] for a comprehensive review of the exist-
ing methods. Bicycles share many similar properties
with motorcycles. Generally speaking, the motorcycle
models differ from the bicycle models in the way con-
tact between tires, and ground is modeled. The bicy-
cle models, such as Getz’s model proposed in [3] and
[4], assume nonholonomic contact, while the motorcy-
cle models include a more realistic tire-ground inter-
action model, considering lateral sliding and normal
load. Getz’s bicycle model, also called the simpli-
fied motorcycle model in [5], captures many impor-
tant aspects of real bicycle and motorcycle dynamics
and has been applied effectively in the development of
a smart motorcycle driver [6]. More complex motor-
cycle models were considered in [7] and [8]. In [7],
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a dynamic model of the motorcycle was developed by
using Getz’s modeling approach [4]. The model is mod-
ified by adding motorcycle trail and caster angle, and
can capture the steering effect on the vehicle motion. In
[8], Meijaard and Popov analyzed the dynamic behav-
iors of the motorcycle models by using the motion
equations generated by a symbolic multibody program.
Branches of stationary and periodic solutions together
with bifurcations of these solutions were calculated for
the motorcycle dynamics.

Motion control of the single-track vehicles became a
popular topic for researchers in the latter half of the last
century. It is normally classified into two categories:
stabilization control [9–12] and tracking control [4,7,
13–18].

Stabilization control is to balance a stationary robot
around the upright position with the steering handlebar
and/or a balancer. In [9], decoupling and linearization
were achieved based on feedback linearization for the
single-input single-output dynamic model of the bicy-
cle robot. Then, a steering handlebar and a balancer
were simultaneously used to stabilize the robot around
the upright position. Keo and Yamakita proposed a non-
linear output-zeroing controller for stabilizing a bicycle
robot at zero speed, also with both steering handlebar
and balancer [10]. A first-order sliding mode controller
with an observer is given in [11] to stabilize a bicycle
robot at zero velocity and varying velocities. In [12],
stability analysis of a human neurological control of
a stationary bicycle was accomplished by the sweep-
ing frequency method and the stability charts for time-
delay dynamical systems.

Tracking control is to guide a robot to track a given
trajectory at a non-zero velocity, while preventing the
robot from falling down. In [4], Getz proposed a feed-
back control law such that the bicycle robot’s posi-
tion can track a desired trajectory. The tracking control
of robot’s position was also solved in [7], where an
asymptotically stable controller was designed. How-
ever, tracking of the robot’s yaw angle was not consid-
ered in the above two controllers. In [13], a simplified
inverted pendulum model was utilized, and a propor-
tional derivative controller with a disturbance observer
was designed for a bicycle robot to track a straight-
line trajectory. However, the controller was designed
based on an approximate linearized model, and the
linearization errors were not considered. In addition,
the robot can only execute its motion approximately
on a straight-line trajectory, which is quite limited.

Yamaguchi et al. [14] designed a self-sustaining con-
troller for an electric bicycle using acceleration con-
trol based on the Lyapunov method and the back-
stepping technique. The running performance in low-
speed range was improved by the proposed acceleration
control. Thus, the controller is applicable to a wider
speed range than the conventional methods. Defoort
and Murakami proposed a second-order sliding mode
controller for stabilizing a bicycle robot around a trajec-
tory. The controller is robust against disturbances and
measurement noises [15]. Hwang et al. [16] proposed a
variable structure underactuated tracking controller for
an electric bicycle. The time-varying system uncertain-
ties and the wind effect were both considered. In [17], a
virtual holonomic constraint (VHC) which specifies the
roll angle of the bicycle robot as a function of its posi-
tion along a strictly convex Jordan curve was adopted. It
was shown that if the mean curvature of the curve is suf-
ficiently small, then the VHC manifold is invariant, and
the closed orbit is asymptotically stable. The bicycle
robot can traverse the curve with bounded speed, and
its speed is periodic in steady-state. In [18], Gundes and
Nanjangud proposed low-order controllers with only
the steering torque as input to control any number of
linear bicycle models at different forward velocity. The
controllers are simple and provide some freedom in
the design parameters. Frezza et al. [19] implemented
a path following controller for a simplified motorcycle
model using a model predictive control (MPC) strategy.
Yi et al. [20] analyzed the external/internal convertible
(EIC) dynamical structure of the motorcycle dynamics.
A nonlinear tracking controller was designed based on
the EIC system. The controller guarantees exponential
convergence of the motorcycle’s position to a neigh-
borhood of the desired trajectory while the roll angle
converges to a neighborhood of the desired equilibrium.

Trajectory planning is also a key issue for the control
and navigation of the bicycle and motorcycle robots.
Hauser et al. addressed the trajectory exploration for
the nonholonomic motorcycle model in [5,21]. In [5],
the problem whether a bounded roll trajectory is guar-
anteed to exist was addressed for a simplified motor-
cycle, given a planar trajectory with a desired velocity
signal. The motorcycle was constrained on the given
planar trajectory, and then an iterative algorithm was
designed for calculating the required roll trajectory
approximately consistent with the planar trajectory. In
[21], an extended control system was embedded into the
motorcycle dynamics by adding two nonphysical con-
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trol inputs. Then, these additional control inputs were
optimized away by the projection operator approach,
such that a flatland trajectory can be lift into a state-
input trajectory.

From the above literature review, we can see that
almost all the related researches focus on modeling
and motion control of the single-track robots. How-
ever, the problem of trajectory planning of the bicycle
and motorcycle robots has not been fully addressed.
Moreover, most of the previous researches on track-
ing control of the bicycles and motorcycles, e.g.,
[3,4,7,13,20], only solved the problem of partial-state
tracking control, i.e., only the position coordinates and
the roll angle of the system were controlled to track
their desired trajectories, without taking the yaw angle
into account. In this paper, we consider both the trajec-
tory planning and tracking control for the Getz’s bicy-
cle model. The main contributions of this paper are
twofold. (1) We plan an optimal desired trajectory for
the bicycle robot by minimizing the maximum of the
roll angle’s equilibrium of the robot. This optimization
problem is solved by the use of the PSO algorithm.
(2) We design a full-state tracking controller for the
bicycle robot to approximately track the desired trajec-
tory with a good balance. Compared with the existing
tracking controllers, the proposed controller can drive
not only the position and roll angle but also the yaw
angle to track the desired trajectories.

The remainder of the paper is organized as follows:
the dynamics of the bicycle robot is described in Sect. 2.
In Sect. 3, the problem of trajectory planning is solved
by the PSO algorithm. Then, the tracking and balance
controller is designed in Sect. 4. Simulations are given
in Sect. 5 to verify the proposed method. The paper is
concluded in Sect. 6.

2 Dynamics of bicycle robot

We view the bicycle robot [4,5] as a plane that is
allowed to move and roll on the ground, as shown in
Fig. 1. For simplicity, the wheels of the bicycle robot
are considered to roll without sideslip and to move in
a flat plane without vertical motion.

Consider a ground-fixed inertial reference frame
O − XY Z with x and y axes in the ground plane and z
axis perpendicular to the ground plane in the direction
opposite to gravity. The key variables and parameters
are

x x coordinate of the point of contact of the rear wheel

( , )x y
θ

R

b p

h δ

XO

YZ

ϕ

Fig. 1 Bicycle robot model

y y coordinate of the point of contact of the rear wheel
θ Yaw (or heading) angle of the robot frame (rear

wheel)
ϕ Roll (or lean) angle of the robot frame (rear wheel)
δ Steering angle

m Robot mass
h Height of the center of mass (when the robot is

vertical)
p Robot wheelbase
b Horizontal distance between rear wheel contact

point and the robot center of mass
R Turning radius
g Gravity acceleration

Consider Fig. 1, the generalized coordinates describing
the configuration of the bicycle robot are the position
(x, y) of the contact point of rear wheel, yaw angle
θ , and roll angel ϕ, which are written in short as q =
(x, y, θ, ϕ)T . For roll angle ϕ, we define tilting right
from the vertical line is positive and for steering angle
δ, turning left is the positive direction.

The kinematics of the planar motion is given as fol-
lows:

⎡
⎣

ẋ
ẏ
θ̇

⎤
⎦ =

⎡
⎣

v · cos θ

v · sin θ

v · σ

⎤
⎦ (1)

where v is the longitudinal velocity of the rear wheel,
and σ is the curvature. Note that the nonholonomic con-
straint of the rear wheel implies that the lateral velocity
of the rear wheel is v⊥ = 0.
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The roll dynamics of the bicycle robot is that of an
inverted pendulum given by

hϕ̈ = g sin ϕ+[(1+hσ sin ϕ)σv2+b(v̇σ +vσ̇ )] cos ϕ

(2)

Equation (2) describes the internal dynamics of the
system. The control inputs of the model given by (1) and
(2) are v̇ and σ̇ , which are denoted by u = (u1, u2)

T =
(v̇, σ̇ )T . The complete Lagrangian dynamics and the
derivation for the reduced equations were given in [4].
The model given by (1) and (2) is the same as that
described in [4]. It is a simplified version of the motor-
cycle model in [7], because the motorcycle trail and
caster angle are not considered.

Next, we consider the roll angle’s equilibrium,
denoted by ϕe. We define the implicit function F(ϕ)

of ϕ as

F(ϕ) = g sin ϕ + [(1 + hσ sin ϕ)σv2

+ b(v̇σ + vσ̇ )] cos ϕ (3)

For a given external control input uext = (v̇ext, σ̇ ext)T ,
the roll angle’s equilibrium ϕe is a solution of the
algebraic equation F(ϕ) = 0, by substituting uext =
(v̇ext, σ̇ ext)T into (3). The internal equilibrium mani-
fold for the system is

ε(t) = {(x, y, ϕ, ϕ̇)|ϕ = ϕe, ϕ̇ = 0} (4)

3 Trajectory planning for bicycle robot

Assume that a start point P0 = (x0, y0) and a destina-
tion point Pf = (xf , yf)of the robot have been assigned
in the Cartesian plane. We will plan a curve between P0

and Pf which satisfies given constraints on the initial
and final tangent angles θ0 and θf . The curve can be rep-
resented by a parameterization Pd(t) = (xd(t), yd(t))
with time parameter t ∈ [t0, tf ], where the initial time
t0 can be set as t0 = 0 without loss of generality, and the
final time tf can be assigned according to the dynamic
properties of the bicycle robot. The final time tf can
also be selected by some optimality criterion. In this
paper, we set tf to be a constant.

At least the first derivative of Pd(t)’s curvature
should exist, because one of the control inputs of the
robot is σ̇ . We choose 3rd order polynomials of time to
parameterize xd(t) and yd(t) as

{
xd(t) = α0 + α1t + α2t2 + α3t3

yd(t) = β0 + β1t + β2t2 + β3t3 (5)

Subject to the boundary conditions

⎧⎪⎪⎨
⎪⎪⎩

Pd(t0) = P0

θd(t0) = θ0

Pd(tf) = Pf

θd(tf) = θf

(6)

The polynomial coefficients αi and βi (i = 0, 1, 2, 3)

are detailed by the following linear algebraic equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α0 = x0

β0 = y0

α1 = λ1 cos θ0

β1 = λ1 sin θ0

α0 + α1tf + α2t2
f + α3t3

f = xf

β0 + β1tf + β2t2
f + β3t3

f = yf

α1 + 2α2tf + 3α3t2
f = λ2 cos θf

β1 + 2β2tf + 3β3t2
f = λ2 sin θf

(7)

where the real parameters λ1 and λ2 in (7) can be freely
selected, and they can influence the curve shape without
violating the endpoint constraint (6). The parameter
vector λ = [λ1, λ2]T can be optimized to adjust the
shape of the planned trajectory such that the maximum
of the desired roll angle’s equilibrium of the robot is
minimized.

Note that the planar trajectory of the bicycle robot
has six constraints on the initial and final states, i.e., four
position constraints P0 = (x0, y0) and Pf = (xf , yf),
as well as two yaw angle constraints θ(t0) = θ0 and
θ(tf) = θf . The 3rd order polynomial in terms of time
given in (5) has eight parameters. Thus, the two para-
meters λ1 and λ2 can be freely chosen. Higher order
polynomials can be adopted when more constraints are
imposed on the robot’s motion trajectory.

Assume that the desired planar motion trajectory of
the bicycle is denoted by 
d(t) = (xd(t), yd(t), θd(t)),
where xd(t) and yd(t) are given in (5). From (5),
it is shown that xd(t) and yd(t) are at least thrice
differentiable. From (1), the desired linear velocity

is vd = ±
√

ẋ2
d + ẏ2

d and the desired yaw angle is
θd = a tan 2(ẏd, ẋd) + kπ(k ∈ Z). In this paper, we
assume that the bicycle robot can only move forward.
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Thus, the desired linear velocity and yaw angle of the
system are

vd =
√

ẋ2
d + ẏ2

d (8)

θd = a tan 2(ẏd, ẋd) + 2nπ (n ∈ Z) (9)

The desired curvature of the path is

σd = ÿd ẋd − ẍd ẏd

(ẋ2
d + ẏ2

d )3/2
(10)

Then the desired roll angle’s equilibrium ϕed, compat-
ible with vd and σd, can be determined by F(ϕd) = 0,
where

F(ϕd) = g sin ϕd + [(1 + hσd sin ϕd)σdv
2
d

+b(v̇dσd + vdσ̇d)] cos ϕd (11)

In order to prevent the robot from falling down and
retain balance more reliably, λ is calculated by solving
the following optimization problem:

min
λ∈R2

max
t∈[t0,tf ]

|ϕed(λ, t)| (12)

For a given λ, e.g., λ = λ0, the problem to solve
max

t∈[t0,tf ]
|ϕed(λ0, t)| is equivalent to

⎧⎨
⎩

max
t∈[t0,tf ]

ϕed(λ0, t), if ϕed(λ0, t) ≥ 0

min
t∈[t0,tf ]

ϕed(λ0, t), otherwise
(13)

Subject to

F(ϕed, t) = g sin ϕed + [(1 + hσd sin ϕed)σdv
2
d

+b(v̇dσd + vdσ̇d)] cos ϕed

= 0 (14)

In fact, the solution to (13) subject to (14) is to calcu-
late the local extrema of the implicitly defined function
of ϕed about the time variable t . The detailed derivation
is placed in the appendix.

The optimization problem in (12) is strongly nonlin-
ear and thus has many local minima. For this reason, it
has to be solved by an algorithm which has the ability of
global optimization. In this paper, the optimal solution
is obtained by using the PSO algorithm. The PSO algo-
rithm was proposed by Eberhart and Kennedy in [22].
It has been widely used to solve nonlinear optimiza-
tion problems. Some improvements and applications
have also been discussed in [23–27]. The PSO algo-
rithm always converges faster and searches better than

the gradient descent technique or direct search, which
may fall into a local extremum. On the contrary, the
PSO algorithm has the ability of global search.

In the PSO algorithm, a candidate solution to the
optimization problem is represented by a particle. The
PSO uses a population of particles to constitute multi-
ple candidate solutions. The PSO iteratively improves
each candidate solution with regard to a given fitness
function, by moving the particles around in the search-
space over the particle’s position and velocity.

The particle with the optimal fitness value is regarded
as the local optimal solution found so far and is called
pBest. The best one among all the pBest particles in the
search-space is regarded as the global optimal solution
and is called gBest. Each particle’s movement is influ-
enced by pBest but is also guided toward gBest. The
velocity of a particle is updated by

V new
iq = ω · V old

iq + c1 · Rand1() · (pBestiq − xiq)

+c2 · Rand2() · (gBestq − xiq) (15)

where V new
iq denotes the velocity of the i th particle in

the qth dimension in the next generation; V old
iq denotes

the velocity of the i th particle in the qth dimension in
the current generation; pBestiq is the current pBest
value of the i-th particle in the qth dimension; gBestq
is the current gBest value of the whole particle swarm
in the qth dimension; xiq is the current position of the
i th particle in the qth dimension; ω is the weight; c1 is
the acceleration of a particle to move to its pBest ;
c2 is the acceleration of a particle to move to the
gBest ; Rand1() and Rand2() are two random num-
bers between 0 and 1.

The new position of a particle is obtained by

xnew
iq = xold

iq + V new
iq (16)

We use the PSO algorithm to search the optimal λ.
The fitness function is defined by f (λ0) = 1

/[
1 +

max
t∈[t0,tf ]

|ϕed(λ0, t)| ] for a given λ = λ0. As a result,

a desired motion trajectory with minimized maximum
roll angle’s equilibrium is achieved.

4 Controller design

Trajectory tracking control is one of the representative
problems of the mobile mechanical platforms, such as
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unicycle systems, car-like robots, and bicycle robots.
Trajectory tracking control of the mobile robots has
been investigated for many years and various kinds of
methods have been proposed in [28–32]. However, tra-
jectory tracking control for the bicycle and motorcycle
robots is a new issue in the field of robotics. In this
section, we consider the trajectory tracking control for
the bicycle robot given in (1) and (2). This problem has
to satisfy two specifications. First, the robot has to be
balanced such that it will not fall down. Second, the
robot must follow 
d. To meet these two requirements,
the controller is developed in three steps. The first step
is to design a balancing controller for roll dynamics.
The second step is to design a controller for tracking
the desired planar trajectory 
d. Finally, we design a
controller for tracking with balance by balancing the
roll dynamics around its equilibrium manifold, which
depends on the tracking controller designed in the sec-
ond step.

4.1 Controller for balancing roll angle

For roll dynamics in (2), we consider the control input

σ̇ int = 1

bv cos ϕ
[hϕ̈d − k1(ϕ̇ − ϕ̇d) − k2(ϕ − ϕd)

−g sin ϕ − (1 + hσ int sin ϕ)v2σ int

cos ϕ − bv̇σ int cos ϕ] (17)

where the constants ki (i = 1, 2) are chosen such that
the polynomial equation hs2+k1s+k2 = 0 is Hurwitz.
It is apparent that by (17), the roll angle ϕ exponentially
converges to its desired trajectory.

4.2 Controller for tracking desired planar trajectory

If we ignore the roll angle, a tracking controller can be
designed for planar motion of the robot. We define the
tracking errors with respect to the moving body frame
and represent them as seen by an observer riding the
vehicle.

⎡
⎣

ex

ey

eθ

⎤
⎦ =

⎡
⎣

cos θ sin θ 0
− sin θ cos θ 0
0 0 1

⎤
⎦ ·

⎡
⎣

xd − x
yd − y
θd − θ

⎤
⎦ (18)

From (18), lim
t→∞(ex , ey, eθ ) = (0, 0, 2nπ) ⇔ lim

t→∞
(x, y, θ) = (xd, yd, θd + 2nπ) n ∈ Z.

For the planar motion of the robot, we give a tracking
controller as follows.

Theorem 1 Assume that the desired planar trajectory
is given by 
d(xd, yd, θd), where xd and yd are thrice
differentiable, vd �= 0, lim

t→∞ σd �= 0, if the control

inputs are

vext
pl = vd

σ ext
pl = σd + 2

k4 · vd

·
[
2k3 · vd ·

(
ey · cos

eθ

2
−ex · sin

eθ

2

)
+sin

eθ

2

]

(19)

(x, y, θ) will asymptotically converge to 
d,
where k3 > 0, k4 > 0.

Proof From (18),

⎡
⎣

ėx

ėy

ėθ

⎤
⎦ =

⎡
⎣

−1 ey

0 −ex

0 −1

⎤
⎦·

[
vext

pl
vext

pl σ ext
pl

]
+

⎡
⎣

vd · cos eθ

vd · sin eθ

vdσd

⎤
⎦

(20)

Choose the Lyapunov function as V = 1
2 k3 ·(e2

x +e2
y)+

k4 · (1 − cos eθ

2 ).

Then

V̇ = k3 · (ex · ėx + ey · ėy) + k4

2
· sin

eθ

2
· ėθ

= k3 ·
[
ex ·

(
eyv

ext
pl σ ext

pl − vext
pl + vd · cos eθ

)

+ey ·
(
−ex · vext

pl σ ext
pl + vd · sin eθ

)]
+ k4

2

· sin
eθ

2
·
(
vdσ

ext
pl − vext

pl σ ext
pl

)

= k3vd · [
(cos eθ − 1) · ex + ey · sin eθ

]

+k4

2

(
vdσd − vext

pl σ ext
pl

)
· sin

eθ

2

=
[
2k3vd ·

(
ey · cos

eθ

2
− ex · sin

eθ

2

)

+ k4

2

(
vdσd − vext

pl σ ext
pl

)]
· sin

eθ

2

= − sin2 eθ

2
≤ 0

V ≥ 0, V̇ ≤ 0 ⇒ V ∈ L∞ ⇒ ex , ey ∈ L∞
⇒ vext

pl , σ ext
pl ∈ L∞ ⇒ ėx , ėy, ėθ ∈ L∞

⇒ lim
t→∞ sin

eθ

2
= 0 ⇒ lim

t→∞ eθ = 2nπ, n ∈ Z.
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In addition,

ëθ = v̇ext
pl σ ext

pl + vext
pl σ̇ ext

pl − (v̇dσ d + vdσ̇d)

= −4k3

k4

[
v̇d

(
ey · cos

eθ

2
− ex · sin

eθ

2

)

+vd

(
ėy cos

eθ

2
− 1

2
ey · sin

eθ

2
· ėθ − ėx · sin

eθ

2

−1

2
ex · cos

eθ

2
· ėθ

)]
− 1

k4
· cos

eθ

2
· ėθ

where v̇d = ẋd·ẍd+ẏd·ÿd√
ẋ2

d+ẏ2
d

∈ L∞. Thus, ëθ ∈ L∞, we

know that ėθ is uniformly continuous. According to
Extended Barbalat Lemma, lim

t→∞ ėθ = lim
t→∞ − 2

k4
[2k3 ·

vd · (ey · cos eθ

2 − ex · sin eθ

2 )+ sin eθ

2 ] = lim
t→∞(− 4k3

k4
·

vd · ey) = 0 ⇒ lim
t→∞ ey = 0. Then, from (19) it is

known that lim
t→∞ σ = σd.

From (20),

ëy = −ėxv
ext
pl σ ext

pl − ex (v̇
ext
pl σ ext

pl + vext
pl σ̇ ext

pl )

+v̇d sin eθ + vd · cos eθ · ėθ

= −ėxv
ext
pl σ ext

pl − ex (v̇dσd

+vdσ̇d − ëθ ) + v̇d sin eθ + vd cos eθ · ėθ

where v̇dσd+vdσ̇d =
...
yd ẋd−...

xd ẏd

ẋ2
d+ẏ2

d
− 2(ÿd ẋd−ẍd ẏd)(ẋd ẍd+ẏd ÿd)

(ẋ2
d+ẏ2

d )2

∈ L∞. Thus ëy ∈ L∞, ėy is uniformly continuous. As
a result, lim

t→∞ ėy = lim
t→∞ (−exv

ext
pl σ ext

pl + vd sin eθ ) =
lim

t→∞ (−exvdσd) = 0. From (20), ėx = eyv
ext
pl σ ext

pl −
vd(1 − cos eθ ) → 0 and ex ∈ L∞, thus lim

t→∞ ex = 0

or lim
t→∞ σd = 0. In the assumption of theorem 1,

lim
t→∞ σd �= 0, thus lim

t→∞ ex = 0 holds. Hence the

proposed controller ensures that the planar motion
of the system converges to 
d asymptotically, i.e.,
lim

t→∞(x, y, θ) = (xd, yd, θd). ��
Remark 1 If lim

t→∞ σd = 0, 
d will tend to a straight

line. In the proof of theorem 1, we have obtained that
lim

t→∞ ey = 0 and lim
t→∞ eθ = 0. Therefore, we can

deduce that − sin θd · (xd − x) + cos θd · (yd − y) = 0,
i.e., (x, y) lies on the desired straight line. In other
words, when lim

t→∞ ey = 0 and lim
t→∞ eθ = 0, the system

converges to the desired straight line.

Remark 2 In the controller (19), the linear velocity of
the system is chosen as the desired one, i.e., vext

pl = vd,
thus it can drive the bicycle robot to track the desired
trajectory in an identical direction all the time, and the
backward behaviors can be avoided.

4.3 Controller for tracking with balance

Unlike the systems with stable internal dynamics, the
nonminimum phase systems with given initial condi-
tions cannot be made to exactly track arbitrary elements
of an open set of the output desired trajectory while
maintaining bounded internal dynamics. Instead, we
will design a controller for approximate tracking of the
desired trajectory while maintaining the balance of the
robot.

To achieve tracking the desired planar trajectory,
the real external control input uext = (v̇ext, σ̇ ext)T is
designed as

{
v̇ext = v̇ext

pl − k5(v
ext − vext

pl )

σ̇ ext = σ̇ ext
pl − k6(σ

ext − σ ext
pl )

(21)

where k5 and k6 are positive constants.
Then, we compute the roll angle’s equilibrium com-

patible with vext and σ ext by submitting them into (3).
The external vector field corresponding to vext and
σ ext is

V Fext =
⎡
⎣

vext · cos θ

vext · sin θ

vext · σ ext

⎤
⎦ (22)

For the robot balance system, we control the roll angle
around its equilibrium manifold ε(t) while the planar
motion of the robot tracks 
d. Thus we approximate
the derivatives ϕ̇e and ϕ̈e by using directional deriva-
tive along the vector field V Fext. We introduce the Lie
derivative as L̄V Fextϕe = LV Fextϕe + ∂ϕe/∂t and
L̄2

V Fextϕe = L̄V Fext L̄V Fextϕe. If ϕ is close to ϕe and
(x, y, θ) is approximately tracking its desired trajec-
tory (xd, yd, θd), then L̄V Fextϕe and L̄2

V Fextϕe will be
close to ϕ̇e and ϕ̈e, respectively [4]. We now give a
control input

σ̇ int
e = 1

bvext cos ϕ

[
hL̄2

V Fextϕe − k1
(
ϕ̇ − L̄V Fextϕe

)

− k2(ϕ − ϕe) − g · sin ϕ −
(

1 + hσ int
e sin ϕ

)

× vext2σ int
e cos ϕ − bv̇extσ int

e cos ϕ
]

(23)

The final controller u = (u1, u2)
T = (v̇, σ̇ )T is

achieved by combining v̇ext in (21) and σ̇ int
e in (23)

as
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{
v̇ = v̇ext

σ̇ = σ̇ int
e

(24)

Thus, for initial values of ϕ and ϕ̇ sufficiently
close to ϕe and L̄V Fextϕe, the system state (x, y, θ, ϕ)

converges to an arbitrarily small neighborhood of
(xd, yd, θd, ϕe) under the controller of (24).

5 Simulations

In the simulations, the parameters of the bicycle robot
are h = 1.0 m, p = 1.0 m, b = 0.5 m, m =
20 kg, and g = 9.8. The initial pose of the bicycle
is [x0, y0, θ0]T = [0, 0, 0]T , ϕ0 = 0, ϕ̇0 = 0. The con-
trol parameters are k1 = 1.5, k2 = 1.0, k3 = 1.5, k4 =
1.5, k5 = 5.0, and k6 = 5.0. The parameters of the
PSO algorithm are ω = 1, c1 = 2, and c2 = 2.

Figure 2 shows a simulation result of trajectory plan-
ning, in which the desired final pose is [xf , yf , θf ]T =
[10, 10, 0]T . We set the final time to be tf = 5 s. T1,
T2, and T3 denote, respectively, three trajectories under
different parameters, as shown in Table 1. T1 is the
planned trajectory using the proposed method, where
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Fig. 2 Simulation result of trajectory planning for [xf , yf ,

θf ]T = [10, 10, 0]T

Table 1 Simulation comparison with different parameters

Trajectory λ max |ϕed|
T1 λ1 = 0.98, λ2 = 4.19 0.23 rad

T2 λ1 = 10.0, λ2 = 10.0 0.59 rad

T3 λ1 = 1.0, λ2 = 1.0 0.53 rad
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Fig. 3 Simulation result of trajectory tracking control. a Motion
trajectory of the bicycle. b Control inputs. c Errors of the system
states

λ = [0.98, 4.19]T is determined by the PSO algorithm.
T2 and T3 denote the trajectories whose parameters λ

are given as [10.0, 10.0]T and [1.0, 1.0]T , respectively.
From this simulation, it can be seen that we can retain
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Fig. 4 Simulation result of trajectory planning for [xf , yf ,

θf ]T = [0, 30, π ]T

the balance of the bicycle around T1 more easily and
reliably, since it has a smaller maximum of the desired
roll angle.

Then, the trajectory tracking control is implemented,
where T1 is chosen as the desired trajectory. The sim-
ulation result is shown in Fig. 3. Figure 3a shows the
desired trajectory T1, as well as the resulting trajectory
in the plane. Figure 3b shows the control inputs. Figure
3c shows the tracking errors of the system.

Figure 4 shows another simulation result of tra-
jectory planning, in which the desired final pose is
[xf , yf , θf ]T = [0, 30, π ]T . The final time is tf = 10s.
T4 denotes the planned trajectory using the proposed
method, and T5 is a circular trajectory that connects the
initial pose with the final pose. Table 2 shows the para-
meters of the two trajectories in detail. The curvature
of T5 is a constant; thus, the robot can track T5 with a
constant linear velocity, and the desired equilibrium of
the roll angle is also a constant, that is ϕed = −0.15.
From this simulation, it can be seen that the maximum
roll angle’s equilibrium of T4 is a bit larger than that
of the circular trajectory T5, because the robot needs
to make a bit sharper turn at the initial and final stages

Table 2 Simulation comparison between two different trajecto-
ries

Trajectory λ max |ϕed|
T4 λ1 = 1.87, λ2 = 2.62 0.17 rad

T5 R = 15 m (radius) 0.15 rad
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Fig. 5 Simulation result of trajectory tracking control. a Motion
trajectory of the bicycle. b Control inputs. c Errors of the system
states

when it moves along T4. However, T4 is much shorter
than T5, such that energy can be saved when the robot
tracks T4. Figure 5 shows the simulation result of the
trajectory tracking control, where T4 is chosen as the
desired trajectory.
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6 Conclusions

In this paper, trajectory planning and tracking con-
trol have been solved comprehensively for a nonlin-
ear, nonholonomic, and nonminimum phase bicycle
robot. The planar motion trajectory of the system has
been designed as a parameterized polynomial curve.
The parameters of the polynomial curve have been cal-
culated by the PSO algorithm to achieve an optimal
desired trajectory, of which the maximum of the roll
angle is minimal. A trajectory tracking controller has
been designed for approximate tracking of desired tra-
jectory while maintaining balance of the bicycle. The
proposed method can generate a motion trajectory with
superior performances, such as small roll angle and
short path length. In addition, the designed controller
can provide good tracking behaviors with good bal-
ance for tracking the planned trajectory. As a result, the
moving performance of the bicycle robot is improved
by the combination of the proposed trajectory planner
and tracking controller.
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cial support from the National Natural Science Foundation of
China (Grant No.61175085 and 61175083)

Appendix

We consider an implicit function defined by

F(t, z) = 0 (25)

Assuming the existence of all derivatives we may need,
we denote the partial derivatives of F with respect to t
and z by Ft = ∂ F/∂t and Fz = ∂ F/∂z, respectively,
and denote by Fr

t the r -th partial derivative with respect
to t , that is ∂r F/∂tr . Assuming Fz �= 0 and taking the
total differential of (25), we get

z′ = dz

dt
= − Ft

Fz
(Fz �= 0) (26)

Since a local extremum of a smooth function satis-
fies z′ = 0, the equilibrium points Pe(te, ze) of (25) are
defined by

{
F(t, z) = 0
Ft (t, z) = 0

(27)

Note that H1(t, z) equals to zero by (27) at the equilib-
rium points Pe. Consider

Hr (t, z) = Fr
t

Fz
(r = 2, 3, . . .) (28)

at the equilibrium points. If the first index r for which
Hr (t, z) �= 0 is an odd number, the point at which
Hr (t, z) is computed is not an extremum. If r is an
even number, the equilibrium point is a minimum when
Hr (t, z) < 0 or a maximum when Hr (t, z) > 0.
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